

MARS AIRPLANE

Mark Croom

AirSC Technical Talk Series Sept 22, 2004

Aerial Regional-scale Environmental Survey

Mars Scout Opportunity

- Innovative, rapid response investigations which complement baseline core missions of the Mars Exploration Program
- Science focused, Principal Investigator Led
- Missions cost-capped at \$325M (FY03 dollars)
- Two Step Proposal Process

Step 1 AO release	05-2002
-------------------	---------

- ➤ Step 1 Proposal due date 08-2002
- ➤ Step 1 Selections 12-2002
- ➤ Step 2 Proposal due date 05-2003
- ➤ Step 2 Selected Phoenix 08-2003
- Launch date as early as mid-2007

Unique Advantages of an Airplane

- Can obtain measurements in inaccessible terrain
- Can cover vast distances across the planet
- Can be guided to sites of particular scientific interest

What We Can Learn About Mars

ARES Science is Category 1

- Study crustal magnetism via aero-magnetic survey
 - Correlate with surface spectra
 - Correlate with imagery
- Study atmospheric gases within the first scale-height
 - ➤ In-situ' mass spectrometer measurements
 - Correlate with imagery
- Characterize local atmospheric states
 - Ancillary science goal
 - > Natural consequence of flight GN&C requirements
- Perform regional scale science investigations on Mars

ARES Science Target Area

Science Instruments

Science-Driven Requirements

- Provide a stable navigation platform
 - > Sub-pixel smearing impacts stability requirements
 - Aeromagnetic survey imposes flight path control
 - Atmospheric species analyses must be in-situ' at 1-2 km, subsonic

Mission Description

Earth-Mars Comparison

Diameter = 7920 miles Gravity = 1 g Surface Pressure = 1000 mbars Topographic Variability = 12 miles Atmos. = 79% N_2 ; 21% O_2 Global Magnetic Field Diameter = 4220 miles Gravity = 0.38 g Surface Pressure = 6.4 mbars Topographical Variability = 18 miles Atmos. = 95.3% CO_2 ; 2.7% N_2 ;1.6% Ar Localized Magnetically Active Regions

What's Hard About Flying on Mars?

Environment

Density 1/100th of Earth

Speed of sound 2/3 of Earth

Temperature 100°F Colder

Autonomous operation

Round trip radio time – 6 – 44 minutes

Event sequencing

No GPS or compass

Uncertainty

Know starting point within a few miles

Winds

Flight altitude vs. local topography

Sample Initial Flight Segment

Design Considerations

Getting there

- Must survive launch plus ~1 year in space
- Must be packaged in protective entry body and then transition to an airplane

Fly fast!

- > Need to fly below speed of sound to keep drag in check
- But need to fly as fast as possible to generate lift

Custom design

- Airfoils
- Unfolding
- Dependable, credible (esp. aero & propulsion)
- > Flight Controls
- Keep it Simple

Airplane Team

- Mars Airplane/Airplane Team
 - Crucial element of the overall ARES project structure
 - Multi-disciplinary
 - Aero, GN&C, Structures, Propulsion, Thermal, Manufacturing, Telecon, Subsystems, Planetary Protection, ATLO, ...
 - National team
 - NASA: LaRC, ARC, DFRC, GRC, JPL
 - Academia: MIT, Stanford, GWU
 - Industry: Aurora, Draper, Lockheed, subsystem providers
- Multi-faceted design process
 - Relatively simple platform design
 - Must meet unusual mission-based requirements
 - Accommodate mission elements throughout mission maturation process
 - Puts / takes to mission architecture

Speed Endurance	325 MPH 60-90 Min.	
Range	300-400 Miles	
Empty Wt.	280 lbs.	
Fuel Wt.	106 lbs.	

Airfoil Design Methods

- Limited database at Re=150,000, Mach 0.7
- MSES v.3.0 2-D Euler + coupled Integral B.L.
 - industry "Standard" for transonic design
 - some low-Re applications
- Validate with 2-D RANS, WT test

Control Surfaces

- Control utilization
 - Ailerons
 - Differential for roll
 - Symmetric for pull-out lift enhancement
 - Ruddervators
 - Pitch and yaw
 - Extreme deflection for stowage

Control design

- Performance, S&C, maneuvering
- Packaging
- Load / torque management
- Simplicity / redundancy

Packing for the Long Trip

Airplane Extraction System

Aeroshell

Airplane Just Prior to Release

2.65 m

Concept Credibility: Simulations and Testing

Thermal Simulations

Structural Simulations

Extraction **Simulations**

Wind Tunnel **Testing**

Flight Testing

Airplane Unfolding

Extraction Testing

Airplane Extraction Testing

High Altitude Drop Testing

Tail Deploy

Right Wing Deploy

High Altitude Deployment Test, Sept. 19, 2002 103,000 feet

Left Wing Deploy

Deployments Complete

Configuration Evolution

Operational Success

Flying Qualities

Tail Unfolding

Aerodynamic Tool Validation

Large Equipment Bay

Wing Hinging

Aeroshell

Mission Design Maturation

Design Iteration

USM3D Solutions (M=0.55, Re =103,000 per meter)

Higher trimmed L/D provided by ARES-2 design

ARES-2 12-Foot & TDT tests

- Static F+M w/ 25%-scale model
- Matching M, Rn
- Low-speed 12-Ft
 - > Tail booms, wings folded
 - \triangleright Large angles (α, β, δ)
 - > Extensive S&C
 - > Flow visualization
 - > ADS, trips, components, chute, etc.
- Transonic Dynamics Tunnel
 - Mach effects
 - \triangleright Perf, S&C across expected flight envelop (α, β, M, Rn, δ) + margin
 - ➤ Used 12-Ft to guide TDT
- Results generally agree with predictions

Deployment and Pullout

Pre-Planned Scientific Survey

Conclusions

- 2007 Mars Scout Opportunity
 - Office of Space Science selected Phoenix proposal
 - ARES received several "Major Strengths"
- Mars / planetary airplane efforts continue
 - > ARES was strongly encouraged to resubmit
 - Addressing issues raised during OSS review in Planetary Airplane Risk Reduction Program (PARR)
 - > Pursuing other related technology development
- Near-term activities
 - Publications
 - > 2D airfoil W-T tests
 - ➤ Full scale flight test
 - ➤ GN&C maturation

